

HB-003-001515

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

May / June - 2017

Mathematics: BSMT-503(A)

(Discrete Mathematics & Complex Analysis-I) (New Course)

> Faculty Code : 003 Subject Code : 001515

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70]

Instructions: (1) All questions are compulsory.

- (2) Question-1 carries 20 marks of objective type questions.
- (3) Each question has mentioned its marks on right hand side.
- 1 Answer all the following objective type questions: 20
 - (1) Define transitive relation by giving an example of it.
 - (2) Is the relation $R = \{(1,1), (1,4), (1,4), (4,1), (4,4), (2,3), (3,2), (2,2), (3,5)\}$ on a set $X = \{1,2,3,4\}$ equivalent relation?
 - (3) State least element of poset $(\{1, 2, 3, 4, 5, 6\}, 1)$.
 - (4) Define Totally ordered set (chain). Is (S_{30}, D) , where $S_{30} = \{1, 2, 3, 5, 6, 10, 15, 30\}$ a chain ? Why ?
 - (5) Give an example of a bounded lattice which is not a complemented lattice.

- (6) To minimize the sum of product canonical form which map is useful?
- (7) Define complete lattice.
- (8) Find out complement of 2 and 3 of the lattice $(S_{30}, *, \oplus)$.
- (9) Define Atoms in Boolean Algebra.
- (10) What are the atoms of Boolean algebra $(S_{30}, *, \oplus, ', 0, 1)$
- (11) Evaluate $\lim_{z \to \infty} \frac{2z+3}{z+i}$
- (12) Define analytic function.
- (13) Check whether the function $f(z) = \overline{z}$ is analytic or not.
- (14) State imaginary part of the function $(\sin x + i \cos x)^5$
- (15) Define Harmonic function.
- (16) State Cauchy-Riemann equations in Cartesian form.
- (17) Find real part of the function $\frac{2+3i}{3-4i}$
- (18) If C is an ellipse with centre at origin then find value of $\int_C \frac{\left(x^3+3\right)}{x} dz$.
- (19) State harmonic conjugate of $u = \frac{1}{2} \log(x^2 + y^2)$
- (20) Find singularities of $f(z) = \frac{2z}{z^2 + 1}$

2 (a) Attempt any three:

6

- (1) Show that (z, \ge) is a poset.
- (2) Draw the Hasse-diagram of (P(A), C), where $A = \{a, b, c\}$.
- (3) Find out complement of each element of the lattice $(S_{30}, *, \oplus)$.
- (4) Show that (Z^+, D) is not a chain, where D means division.
- (5) If (P, R) is a poset then show that (P, \tilde{R}) is also a poset.
- (6) In usual notation prove that

$$\left[A(x)\right]^{C} = A - A(x) = A(x')$$

(b) Attempt any three:

9

- (1) Show that similarity of two matrices on the set of $n \times n$ matrices is an equivalence relation.
- (2) Show that the relation $R = \{(x, y)/x y \text{ is divisible by 3}\}$ on the set of integers z, is an equivalence relation.

- (3) Let P(A) be the power set of nonempty set A and for $X,Y\in P(A)$, $X*Y=X\cap Y$ and $X\oplus Y=X\cup Y$ then prove that $(P(A),*,\oplus)$ is a lattice.
- (4) In a distributive lattice (L, \leq) prove that $A \wedge B = a \wedge c$ and $a \vee b = a \vee c \Rightarrow b = c$.
- (5) Define lattice and show that (S_6, D) is a lattice.
- (6) Express Boolean expression $\infty(x_1, x_2, x_3) = x_1 \oplus x_2$ as the sum of product canonical form.
- (c) Attempt any two:

10

- (1) If (L, \leq) is a lattice then prove that
 - (i) $a \lor a = a$ and $a \land a = a \quad \forall a, b, c \in L$
 - (ii) $a \lor b = b \lor a$ and $a \land b = b \land a$
 - (iii) $a \wedge (b \vee c) = (a \vee b) \vee c$ and $a \wedge (b \wedge c) = (a \wedge b) \wedge c$
- (2) Prove that direct product of two lattices is also a lattice.
- (3) State and prove stone's representation theorem.

- (4) If $(B, *, \oplus, ', 0, 1)$ is a Boolean Algebra then prove that for any $x_1, x_2 \in B$
 - (i) $A(x_1 * x_2) = A(x_1) \cap A(x_2)$
 - (ii) $A(x_1 \oplus x_2) = A(x_1) \cup A(x_2)$
- (5) State and prove D'-Morgan's law for the Boolean Algebra $(B, \phi, *, \oplus, ', 0, 1)$.
- 3 (a) Attempt any three:

6

- (1) Show that $\lim_{z\to 0} \frac{\overline{z}}{z}$ does not exist.
- (2) Define singular points and show that $f(z) = \overline{z}$ is not analytic function.
- (3) Show that f(z) = (3x+y)+i(3y-x) is entire function.
- (4) Prove that $f(z) = \cos z$ is analytic function and find f'(z).
- (5) Find $\int_{c} \frac{z^2}{z-1} dz$, c: |z| = 2
- (6) State Cauchy's integral formula for derivative.

(b) Attempt any three:

- 9
- (1) Show that $f(z) = \frac{1}{z}$ is an analytic function but not an entire function.
- (2) If complex function f(z) = u + iv and its conjugate $\overline{f}(z) = u iv$ are analytic functions then prove that f(z) is constant function.
- (3) Show that an analytic function with constant modulus is constant.
- (4) Find an analytic function f(z) whose real part is $\cos x \cdot \cosh y$.
- (5) Find $\int_{c} z^{2} dz$, c is a part of parabola $y = x^{2}$ from the point z = 0 to z = 1 + i.
- (6) State and prove Liouville's theorem.
- (c) Attempt any two:

10

(1) If w = f(z) is analytic function of u and v which are harmonic functions of r and θ , then prove that polar from of f'(z) is

$$f'(z) = e^{-i\theta} \left(\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} \right) = \frac{r}{z} \left(\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} \right)$$

- (2) State and prove Morera's theorem.
- (3) State and prove Cauchy's integral formula.
- (4) If the complex function f(z) = u + iv is an analytic function then prove that $\nabla^2 |f(z)|^2 = 4 |f'(z)|^2$ and verify this result for f(z) = z.
- (5) Obtain C-R equations for an analytic function f(z) in polar form.